30 dic. 2010

Demostración de 2 = 1

Onde esta o truco?

Supoño que haberá truco, descúbreo e deixa as túas aportacións en comentarios,

27 dic. 2010

Capacidade das botellas

Temos unhs grande variedade de capacidades nas botellas de auga, coca-cola, cervexas... e algunhas aínda teñen nome popular como podedes ver na seguinte táboa onde aparecen algúns tamaños de botellas de cervexa cos nomes coñecidos,

Sen embargo, hai unha grande variedade de capacidades de botellas de champagne e viños con nomes moi sonoros e descoñecidos para a maioría da xente.

26 dic. 2010

Pode existir un xigante semellante a un humano?

Recentes estreos de dúas películas baseadas en obras da literatura universal axudan a plantearnos a pregunta:

Pode existir un xigante semellante a un humano?

Alicia no país das marabillas

Alicia está sentada baixo unha árbore, cando aparece un coello branco, vestido con chaqueta e chaleco; que corre dicindo que chega tarde, mirando o seu reloxo de bolso. Alicia vai detrás dél e cae nun pozo durante moito tempo.
Alicia atopa unha pequena botella, que di “BÉBEME”; esta poción encolle a Alicia ata medir 25 cm de altura. Despois atopa un pastel co letreiro "CÓMEME” convertindoa nunha xigante.


21 dic. 2010

A xeometría da escultura de Monelos

Artigo de Enrique Pujales en Hipatia


Foto tomada de flickr
Enrique Pujales é profesor de matemáticas do IES Fernando Wirtz e coordinador do boletín de divulgación matemática, Hipatia, que presenta un artigo titulado A xeometría na escultura de Monelos, que non podedes deixar de ler.



A revista pódese baixar do enderezo do IES Fernando Wirtz.

Na foto do IES Neira Vilas (Oleiros) aparece Enrique Pujales nunha conferencia sobre Matemáticas e superstición.



e na seguinte foto da Opinión, aparece Enrique Pujales á dereita, xunto a Pancho Fontenla, Gonzalo Temperán e Santiago López Arca, na actividade Os luns con ciencia: Fórmulas estimulantes, novos medios para divulgar matemáticas, celebrada na Domus como presentación dos boletíns de divulgación matemática que se editan na Coruña: Hipatia, Mathesis e Tetractis.

20 dic. 2010

3º póster de obxectos matemáticos cotiás

Terceiro póster con obxectos da nosa vida cotiá para descubrir as súas propiedades matemáticas.

Esta terceira proposta esta formada por:
  • unha máquina elíptica (Por que se chamará así?),
  • o obxectivo dunha cámara fotográfica,
  • un enxame de abellas,
  • o tendido eléctrico do tranvía,
  • unha margarida 
  • a lámina de Leonardo da Vinci, "O home de Vitrubio".
Deixa as túas respostas en "comentarios"


Póster nº 1          Resolución do póster nº1

Póster nº 2          Resolución de póster nº2

Outros obxectos:

Resolución de obxectos matemáticos 2

2º Póster de Obxectos Matemáticos cotiás
Cociña solar
A cociña solar ten a forma dun paraboloide e a pota estaría situada no seu foco, e polo tanto, cumpre as propiedades ópticas da parábola, que xa vimos no 1º póster de obxectos matemáticos.

19 dic. 2010

Tetractis 48

Sumario:
X Aniversario de AGAPEMA.
Instituto de Geogebra de Galicia (IGG).
Concursos de resolución de problemas.
Abellas e matemáticas, por Javier Sampedro Herranz.
Calendario 2011 (Dodecaedro rómbico), por Alicia Pedreira Mengotti.

Calendario 2011

É un dodecaedro rómbico (por Alicia Pedreira Mengotti)
Para construilo terás que imprimir antes, con seis follas A4 de cores, as páxinas do seguinte libro:

e seguir as seguintes indicacións:

18 dic. 2010

Un cono de Apolonio para Coque

O pasado xoves, 16 de decembro, celebrouse o X Aniversario da Fundación de AGAPEMA, e a súa delegación coruñesa celebrouno cunha charla do profesor Manuel Pazos Crespo (Coque) baixo o título:

"Aprender e ensinar: dúas caras dun mesmo oficio"


Ao finalizar o acto, a secretaria da Delegación de zona de Agapema, Carmen Peñamaría Ramón (Miti) e profesora de matemáticas do IES Monelos, entregou a Coque un agasallo, o cono de Apolonio, similar ao que aparece na película Agora.

O cono de Apolonio mostra as seccións cónicas: circunferencia, elipse, parábola e hipérbole.

15 dic. 2010

Tetractis 21_30

Volume (III) recopilatorio dos números de Tetractis, que van do nº 21 ao 30, publicados entre abril de 2008 e xaneiro de 2009,

14 dic. 2010

Olimpíada Galega 2011

No Distrito Universitario de Galicia, as probas da Fase Autonómica da XLVII Olimpiada Matemática Española realizaranse na Facultade de Matemáticas de Santiago de Compostela o venres, 21 de xaneiro de 2011 en dúas sesións: 
  • 1ª sesión:  10:00 h - 13:30 h, con tres problemas a resolver.
  • 2ª sesión:  16:00 h - 19:30 h, con tres problemas a resolver.
Ao remate da segunda sesión darase a coñece-la composición do Equipo Galego que participará na Fase Nacional, nun acto no que tamén se entregarán diplomas de honra a quen se clasifique entre as 30 primeiras posicións.

Máis información sobre bases, convocatoria e inscrición.
Problemas e premios de edicións pasadas.

13 dic. 2010

Medidor de pasta

Aquí podes ver diversos modelos dun utensilio de cociña, que se emprega para medir a cantidade de espaguettis que hai que votar na ola, dependendo do nº de comensais.

Todos os modelos teñen en común unha serie de círculos de diferente diámetro.
Estiven analizando o que teño na miña casa e calculei o diámetro do círculo correspondente á porción que lle correponde a unha persoa, poderías completar a táboa seguinte?
Ten en conta que para dúas persoas terá dobre área. ¡Pero non dobre diámetro!

Deixa as túas respostas en comentarios

11 dic. 2010

Anamorfose dun cubo

Para saber máis de anamorfose podes consultar:

10 dic. 2010

X Aniversario de Agapema

Charla con Coque Pazos
O vindeiro xoves, 16 de decembro de 2010, a Delegación da Coruña de AGAPEMA celebra o X aniversario da súa fundación, e para iso contará co Profesor e cofundador de AGAPEMA (ver foto de prensa), Manuel Pazos Crespo  (Coque) que diseratará sobre:

Aprender e ensinar: dúas caras dun mesmo oficio

a sesión celebrarase na aula-taller de matemáticas do IES Ramón Otero Pedrayo (A Coruña).


Para coñecer a Coque Pazos podedes ver:
(Na foto cun grupo de profesores coruñeses nas J.A.E.M. de Castellón (1991).
  • Na entrevista realizada en Cadernos de Pedagoxía

9 dic. 2010

XXIII Open Matemático 2011

O Colectivo Frontera (IES 1 de Requena- Valencia) ven de convocar a XXIII edición do Torneo Aberto de Resolutores de Problemas coñecido por Open Matemático.

Comezará o 17 de xaneiro e desenvolverase durante 7 xornadas (a 1ª durará dúas semanas, as cinco seguintes, unha semana e a 7ª será unha concentración nun centro sen determinar).

O tema deste será: Poesía Visual e Matemáticas.

As bases e o formulario de inscripción están a continuación:


Para máis información en: openmatematico@yahoo.es

Prefixos das potencias binarias

Utilízanse no campo da tecnoloxía da información.
Os prefixos SI representan estrictamente potencias de 10.
Non se deben utilizar para expresar potencias de 2 (por exemplo, un kilobit representa 1000 bits e non 1024 bits).
Os prefixos adoptados para as potencias binarias non pertencen ao SI.
Os nomes e símbolos utilizados para os prefixos das potencias binarias son:

Para facer os cálculos,  con exactitude, na actividade Mentiras e matemáticas deberías empregar estas unidades; aínda que de maneira aproximada podes utilizar as do SI (Sistema Internacional).
Para saber máis podes consultar as Unidades legais de medida.

4 dic. 2010

Mentiras e matemáticas

Estamos tan acostumados a escoitar e tratar con números grandes que moitas veces non nos percatamos da magnitude deles.
É o caso deste anuncio de ya.com, que seguro que coñecedes:


O rapaz do vídeo ten un i-pod con capacidade para un trillón de cancións, que case parece unha tontería.
Así que vamos facer uns poucos cálculos para asimilar esa cantidade.

Supoñendo que unha canción ocupa unha media de 3MiB* (mebibytes),
  • Cal é a capacidade necesaria para que o i-pod conteña un trillón de cancións?
  • Se unha canción dura unha media de 3 min e supoñendo que dedicas toda a vida a escoitar a música do i-pod, poderías escoitar un trillón de cancións?
  • Cantas desas cancións poderías escoitar se vives 100 anos?
Deixa as túas respostas en comentarios

(*) Pódes calculalo de maneira aproximada utilizando os valores do sistema métrico decimal.

3 dic. 2010

Os 25 principais de Tetractis

Estes son os documentos (en formato issuu) máis vistos no primeiro ano deste blogue.

Tetractis publicou, neste primeiro ano, 72 documentos na plataforma:
www.issuu.com/tetractis.

Na seguinte relación aparece o nº de veces que foron visitados:

1.  Cartel III Certama de Matmonólogos                       616
2.  Díptico III Certame de Matmonólogos                     595
3.  Problemas da 1ª xornada do Open Matemático        587
4.  Reloxo de Sol do IES Mugardos                               540
5.  Bases do Open matemático                                    476
6.  Carteis Open Matemático                                       470
7.  Guións do I Certame de Matmonólogos                   469
8.  2ª xornada Open Matemático                                 468
9.  Problemas da 3ª xornada do Open Matemático        465
10.Xeometría de papel                                                454
11.Guións do II Certame de Matmonóloogs                  452
12.Proxecto Estatístico: A que altura…?                       419
13.Álbum de Fotos do III Certame de Matmonólogos     417
14.Programa IV Feira Matemática                               394
15.Tetractis 38                                                          385
16.Tetractis 9                                                            384
17.Guións do III Certame de Matmonólogos                 379
18.Álbum de fotos IV Feira Matemática                       376
19.Prezo do mexillón                                                  361
20.Tetractis 35                                                          358
21.Problemas da 4ª xornada do Open Matemático        357
22.Poster do Rostro humano das matemáticas             353
23.Tetractis 39                                                          348
24.Matemáticos Galegos                                             328
25.Tetractis 44                                                          324

2 dic. 2010

O problema de Sidon

Dous matemáticos españois e un húngaro resolven un problema planteado hai 80 anos.

O problema foi planteado polo matemático húngaro, Simón Sidon, ao entonces estudante, Paul Erdös e dicía o seguinte:

Cal é o maior tamaño dun conxunto de números, todos menores que unha cantidade dada, no que todas as sumas de dous elementos do conxunto dan resultados distintos?

  • 1, 2, 5, 10, 16, 23, 33,35 é un conxunto de Sidón.
  • 1, 3, 7, 10, 17, 23, 28, 35 non é, xa que 1+23 = 7 + 17
Este problema foi resolto por Erdös na metada do século XX; pero quedou unha versión pendente, que se chamou o Problema dos Conxuntos xeneralizados de Sidon, un problema da teoría combinatoria de números.

Noticia no País         madrimasd             divulgamat

Este conxunto de Sidon podería estar relacionado con estes problemas de combinatoria que vemos en secundaria:

  • Cal é o número de pagos diferentes que se poden facer con todas as moedas da unidade euro? É dicir: 2€; 1€; 0,50€; 0,20€; 0,10€; 0,05€; 0,02€ e 0,01€ ou na versión cents:1, 2,  5, 10, 20, 50, 100 e 200cents.
  • Cantas pesadas diferentes se poden facer, dispoñendo só dunha unidade de cada, coas pesas: 1g, 2g, 4g, 8g, 16g, 32g?
  • Serán os conxuntos anteriores, conxuntos de Sidon?

1 dic. 2010

Recibos e IVE

Un simple recibo xenera grandes problemas.

Recuperamos e actualizamos, aos novos tipos de IVE, unha actividade que xa foi publicada, hai uns anos, no boletín Tetractis.

Trátase do recibo de compra dos Supermercados Gadis (seguro que hai outros que traen a información que permite traballar coma esta actividade, Lidl...).

Como podedes observar na parte baixa do tique de compra, aparecen englobados os artigos comprados por diferentes tipos de IVE; pois ben, trátase de adiviñar, cal é o tipo de IVE de cada produto?
A actividade considérase adecuada para 2º ciclo de ESO ou Matemáticas aplicadas ás CC.SS. I

30 nov. 2010

Un ano de blogue

Este blogue cumple un ano.

Xa vai un ano desde que o 30 de novembro de 2009 tivo a súa primeira entrada, ata chegar a 173, que, repartidas por meses, quedan como indica o gráfico:

29 nov. 2010

Instituto GeoGebra de Galicia (IGG)

O documento de constitución foi aprobado o 23 de novembro de 2010.
O Instituto GeoGebra de Galicia forma parte da Asociación Galega de Profesorado de Educación Matemática (AGAPEMA)


O enderezo oficial do IGG é:
IGG-AGAPEMA
Departamento de Pedagoxía e Didáctica
Facultade de Ciencias da Educación
Campus de Elviña, s/n
15071 – A Coruña, Spain

28 nov. 2010

Historia do 1

Últimas entregas deste documental da BBC, no que tamén participa o matemático inglés, Marcus de Sautoy


27 nov. 2010

Obxectos matemáticos cotiás (2)

Segundo poster con obxectos da nosa vida cotiá para descubrir as súas propiedades matemáticas.


Esta segunda proposta está formada por:Cociña solar, foco de xardín, o cadro de Dalí: Semicunca xigante volando", o logotipo de Caixanova, unha botella de auga e unha piña dun piñeiro.
Deixa as túas propostas en comentarios


26 nov. 2010

Resolución de Obxectos Matemáticos I

Resolución do primeiro poster proposto
Nesta nova sección de obxectos matemáticos na vida cotiá, propuxemos un primeiro poster con 6 obxectos dos que había que falar das propiedades matemáticas que teñen.

Algunhas destas propiedades son:

Caixa de ferramentas
A caixa de ferramentas utiliza a combinación de paralelogramos articulados para xuntar e separar os distintos departamentos da caixa. Notar que as barras laterais sempre se manteñen paralelas e incluso os lados imaxinarios que unen os vértices desas barras.

24 nov. 2010

A calculadora CASIO FX-Fraction

Recuperamos unha ficha de uso da calculadora Casio FX (Fraction) que se publicou no Tetractis (nº 36) de outubro de 2009.

23 nov. 2010

Canguro Matemático 2011

Acaba de convocarse o XVIII concurso Canguro Matemático Europeo, unha proba, tipo test, de matemáticas destinada a alumnos de Secundaria e Bacharelato, e na que, na edición do ano 2010, participaron arredor de 6 000 000 de alumnos en todo Europa.
O prazo de inscripción remata o 22 de decembro de 2010 e a proba realizarase o xoves, 17 de marzo de 2011.

Para saber sobre a convoctoria, bases, inscripción, probas de anos anteriores... pulsa aquí:

Canguro Matemático

A nosa participación foi crecendo ano tras ano, tal e como indica o gráfico seguinte e tendo en conta que os alumnos aportan a cantidade de 3€ pola súa participación.
Non dispoñemos dos datos dos anos: 2003 e 2005.

22 nov. 2010

Suma solidaria: 12cm + 12€ = 14cm

Unicef acaba de presentar unha nova campaña contra a desnutrición.
A medición da circunferencia do brazo permite identificar a desnutrición.

Esta medición realízana coa particular cinta métrica da foto.

Os nenos entre 6 meses e 5 anos cunha circunferencia do brazo inferior a 11,5 cm sofren desnutrición aguda grave.

Coa campña, Unicef tenta sensibilizar á xente para que cunha donación de 12€, a circunferencia do brazo dun neno desnutrido pasaría de 12 a 14cm.

Responde:

Cal é o raio e o diámetro dun brazo de 12cm de circunferencia?

Que incremento ten o diámetro ao pasar de 12 a 14cm de circunferencia?

21 nov. 2010

Tetractis 47

Sumario:

1º aniversario do blogue Tetractis.
Matemáticas básicas no pentagrama, por Elena López Serrapio.
Regresión linear nas calculadoras.
Reloxos matemáticos para todos.
Taraceas de Fra Giovanni, por Javier Goyanes Souto.

20 nov. 2010

Reloxos matemáticos para todos

Para os complexos,
para os radicais,
para os calculadores,
para os matediversos,
para os primos,
.................
.................
...para todos.


19 nov. 2010

Historia do 1

Cuarta e quinta entregas deste documental da BBC

18 nov. 2010

Tetractis 11-20

Volume (II) recopilatorio dos números de Tetractis, que van do nº 11 ao 20, publicados entre setembro de 2007 e abril de 2008, coa seguinte relación de artigos:
Método de Montecarlo para calcular Pi (nº11), por Enrique Currás.
Polígonos nazarís (nº11).
O triángulo de Sierpinski (nº 12), por Alicia Pedreira.
Arte con números: Tobia Rava (nº 12).
Alberto Durero (nº 12), por Laura Mella e Lucía Santos.
Realismo máxico: Rob Gonsalves (nº 13).
Triángulo de Pascal ou Tartaglia (nº 13), por Sabela Rodríguez e Laura Seoane.
23: o número de Beckham (nº 13), por Gonzalo Temperán.
Matemáticas electorais (nº 14), por Zayen Fernández.
Un gráfico desafortunado (nº 15), por Gonzalo Temperán.
Matemáticos galegos (nº 15), por Ana Romero Ferrreiro e Ariana Varela.

Sangaku, taboíñas matemáticas (nº16), por Alicia Pedreira.
Arte e matemáticas: István Orosz (nº 17).
O rostro humano das matemáticas: poster. (nº 17)
Arte e xeometría: José Mª de Labra (nº 18).
Piero della Francesca e Luca Paccioli (nº 19), por Ariana Varela.
Estruturas xeométricas (nº 19), por Sabela Rodríguez.
Xeometría aérea coruñesa con Google Earth (nº20).
Monte de San Pedro: pura xeometría (nº 20).

17 nov. 2010

Premios SecunMat-UAM

O Departamento de Matemáticas da Facultade de Ciencias da UAM convoca a V Edición do Premio para Estudantes de Secundaria co obxectivo de fomentar o interese polas Matemáticas e os temas relacionados con elas.
Premiaranse os mellores traballos presentados, que poderán ser de tipo experimental ou teórico, e en calquera caso, dirixidos a fomentar a creatividade científica e o espírito de investigación en calquera dos ámbitos do coñecemento que teñan relación coas matemáticas.
Poden participar estudantes que durante 2010/11 estean cursando estudos a partir do segundo ciclo de ESO e que preparen un traballo de investigación, de tipo experimental ou teórico, sobre un tema relacionado coas Matemáticas. O traballo pode ter un mínimo de dous e un máximo de 5 autores, e debe ser coordinado por un titor ao menos.

Máis información aquí

Cartel e Bases do Premio.

16 nov. 2010

Regresión linear nas calculadoras

Formulario de uso das calculadoras CASIO que utilizan os nosos alumnos para calcular os coeficientes de correlación, coeficiente de regresión, recta de regresión e estimación de valores en variables bidimensionais.
É presiso ter en conta que algúns modelos poden ter algunha variación nos modos de actuación.

15 nov. 2010

Mapa MatemáTICo

Tetractis xa forma parte do Mapa MatemáTICo en Google Maps, unha rede de Blogues Educativos, Sitios Web, Páxinas de Departamentos Didácticos de Matemáticas e Wikis dedicados á ÁREA DE MATEMÁTICAS.


Ver Mapa MatemáTICo en un mapa más grande

14 nov. 2010

13 nov. 2010

A Sagrada Familia

Marabillosa xeometría

(Foto da Voz de Galicia)

Antonio Gaudí proxectou a Sagrada Familia combinando formas xeométricas, elixidas polas súas calidades estruturais, lumínicas, acústicas...: para iso utilizou cuádricas (hiperboloides, paraboloides e elipsoides), helicodes e conoides. O feito de deseñalas coma superficies regradas facilita a súa construción.

O hiperboloide é unha superficie xerada por unha hipérbole que xira arredor dun círculo ou elipse. Nas bóvedas e ventás, o hiperboloide queda limitado por uns estrelados creados con estas liñas rectas. As bóvedas e as ventás son interseccións entre hiperboloides, enlazados con paraboloides grazas a rectas comúns a dúas superficies.

O paraboloide hiperbólico é unha superficie alabeada de seccións parabólicas que é o resultado do desprazamento dunha liña recta enriba de outras dúas que se cruzan no espazo.

O helicoide é unha superficie regrada xerada por unha liña recta que xira segundo unha espiral arredor dun eixe vertical. Con helicoides inventou unha columna nova: a columna de dobre xiro.
O conoide é unha superficie formada por unha recta que se despraza enriba de outra recta e sobre unha curva, por exemplo unha sinusoide. Utilizounos nas cubertas das escolas parroquiais.
O elipsoide é un sólido no que todas as seccións planas son elipses. Utilízase para os nós ou capiteis que subdividen as columnas inferiores en ramas.

Gaudí tamén desenvolveu un sistema de proporcións aplicado a todas as dimensións e todos os elementos do templo.

Para saber máis: A Sagrada Familia-Xeometría

E agora unha visita virtual ao interior do templo:


12 nov. 2010

Historia do 1

2ª e 3ª entregas deste documental da BBC




11 nov. 2010

Pentaminós online

Xa sabedes que as letras de cabeceira do blogue e do boletín TETRACTIS están construídas cun puzzle de 12 pezas chamadas Pentaminós (ou pentominós).

Un pentaminó é unha figura formada por cinco cadrados unidos polos seus lados. (Tetractis nº1)

Forman parte dunha familia máis ampla, chamada Poliminós, formada por uniminós, biminós ou dominós, triminós, tetraminós, pentaminós, hexaminós...

Tetris é un xogo coñecido por vos, que está formado polos tetraminós e un trimminó.

Aquí tes o xogo online, onde podes construir as figuras que aprecen á dereita.

10 nov. 2010

As matemáticas tamén se equivocan

Como podedes explicar esta pregunta que navega por internet?,


Un billón de micrófonos é un megáfono?



9 nov. 2010

Me gustan las matemáticas

Un poema de José Antonio Hervás.

Hai un tempo facíamonos eco dun libro titulado Explorar el mundo. Poesía de la ciencia, cunha selección de poemas de Miguel García Posada.
Pois ben, vemos que Miguel García Posada dirixe unha sección de poemas sobre ciencia na páxina web: madrimasd, onde atopamos este poema sobre as matemáticas:

ME GUSTAN LAS MATEMÁTICAS

Como ninguna otra ciencia
Me gustan las matemáticas
Porque agotan mi paciencia
Con cuestiones enigmáticas

Confieso, sin estridencias,
Que me resultan simpáticas
Todas las circunferencias
Y demás curvas cuadráticas

Yo comprendo que la gente
Piense que soy diferente
Porque me gusta soñar

Con las series divergentes
Los números trascendentes
Y la función modular

8 nov. 2010

II Concurso de microrrelatos matemáticos


A Facultade de Ciencias da Universidade de Alicante volve a convocar o concurso de microrrelatos baseados no número Pi, é dicir, deberase crear un relato de 20 palabras coa condición de que cada palabra debe levar un número de letras igual ás cifras do número Pi, coma por exemplo:



A mágoa e que está convocado para o alumnado e persoal da Universidade de Alicante, pero facémonos eco neste blogue porque, sen dúbida, é unha actividade interesante que podemos levar a cabo nos nosos centros.



Aquí tes outras propostas de microrrelatos:


Sol y luna a veces consiguen, al pasear entre las nubes, alborear, palidecer nuestra eclipsada tez. En tal tesitura, ¡Huye!

Ven o vete, o mejor, determina si merece vivir así. Lucha, quiérete, afróntalo. ¡Querida, Escúchame! ¡Sal de ese patético coma!


Uno u otro, a saber. Adivinaré si alguno hurta mis panes, obtendré resultado. Ingerir marihuana les da una excesiva risa.

que se poden ler no blogue: Relatos Encallados.

Aínda que este ten máis sona:

“Soy y seré a todos definible

mi nombre tengo que daros

cociente diametral siempre inmedible

soy de los redondos aros”

7 nov. 2010

Historia do número 1 (1/7)

Presentamos un vídeo da BBC sobre a historia do número 1, que iremos vendo en sete capítulos:

6 nov. 2010

Espiral de Ulam

Unha espiral cadrada de números primos.

O matemático polaco (nacionalizado estadounidense) Stanisław Marcin Ulam (1909-1984), ao parecer aburrido durante una conferencia, empezou a escribir os números naturais seguindo a traxectoria dunha espiral cadrada en sentido antihorario (Espiral de Ulam)
e conforme ía crecendo foi observando que os números primos aparecían con moita frecuencia nas diagonais da espiral,
tal e como se pode observar na figura:

Por certo, Ulam foi coautor do
Método de Montecarlo (método estatístico para aproximar expresións matemáticas, por exemplo, calcula o valor de pi, utilizando números aleatorios) e participou no Proxecto Manhatam ( que desenvolveu a primeira bomba atómica).


No seguinte enlace tes un programa para xenerar a espiral de Ulam

5 nov. 2010

Índice de masa corporal (IMC)

Índice de masa corporal (IMC), body mass index (BMI) ou índice de Quetelet é a relación entre o peso (en kg) e o cadrado da estatura (en metros) dunha persoa e trata de medir o seu grao de obesidade, segundo o valor nunha táboa determinada.


Este índice foi ideado, en 1870, polo matemático, estatístico belga Lambert Adolphe Jacques Quételet.
Sen embargo, é bastante problemático utilizar este índice en adolescentes, debido á súa variación, como demostra os seguintes gráficos de percentís do IMC para adolescentes
.

4 nov. 2010

Festa da Ciencia en Galego

Construímos papaventos tetraédricos

Para celebrar a festa da Ciencia en Galego, varios grupos de alumnos fixeron papaventos tetraédricos.
O tempo acompañou e fixo sol, pero estivemos con "calma chicha" e os papaventos non voaron.

Aquí tedes o Álbum de fotos desta festa.

3 nov. 2010

Parámetros estatísticos na calculadora

Ficha publicada no número 46 de Tetractis, para calcular os parámetros estatísticos (media aritmética e desviación típica, principalmente) en catro modelos de calculadora Casio.

2 nov. 2010

Tetractis 1_10

Volume (I) recopilatorio dos dez primeiros números de Tetractis, publicados entre outubro de 2006 e maio de 2007 coa seguinte relación de artigos:
Todo é número? (nº 1), por Iago Fraga.
Pentaminós (nº 1), pola redacción de Tetractis.
Mosaicos nazarís (nº 2), por Alba Arias e Laura Busto.
Códigos e díxitos de control (nº3), por Jurema Pena e Fátima Froiz.
Actividades de aula: Recibos e IVE (nº3).
As matemáticas do Código da Vinci (nº4), por Lucía Merelas e Cristina Rabuñal.
Matemáticas na prensa (nº5), por Iago Fraga.
Mathematical Moments: Combatir enfermidades (nº5), traducido por Marta Tarrío.
Mathematical Moments: Escoitando música (nº6), traducido por Atenea Fdez. Rozadilla.
Un vello método de multiplicar (nº6), por Gonzalo Temperán.
Selección de mulleres matemáticas, (nº6), por Amaya Bouza e Lucía Cabado.
Matemáticas exipcias (nº7), por Beatriz e Mercedes Fdez. Marta.
Fractais (nº8), por Antón Cotelo.
Logotipos e xeometría (nº8), por Ero Maroño e Aida Fdez.
A lenda dos mil grous (nº9)
Curiosidades de pi (nº10), por Cristina Fdez. Pérez.

Tamén podedes ver a sección: Xeometría de papel, por Alicia Pedreira Mengotti